Abstract

PurposeThe stress relaxation and compressive strength of resin, resin-modified glass ionomer, glass ionomer, polycarboxylate, and zinc oxide eugenol cements were measured to determine the characteristics of these materials after setting. MethodsA total of 19 luting cements including 12 permanent cements and 7 temporary cements were used. Cylindrical cement specimens (10mm long and 6mm in diameter) were obtained by chemical setting or light curing. The specimens were stored for 24–36h in water at 37°C and were then used for the stress relaxation and compression tests. The stress relaxation test was carried out using three constant cross-head speeds of 5, 50, and 100mm/min. Upon reaching the preset dislocation of 0.5mm, the cross-head movement was stopped, and the load was recorded for 60s. Fractional stress loss at 1s was calculated from the relaxation curves. The compressive strength and modulus were measured at a cross-head speed of 1mm/min. Data were analyzed with the Kruskal–Wallis test and Holm's test. ResultsA zinc oxide eugenol cement [TempBOND NX] exhibited the largest fractional stress loss. A resin cement [ResiCem] showed the largest compressive strength, while a glass ionomer cement [HY-BOND GLASIONOMER CX] showed the largest compressive modulus among all tested cements (p<0.05). ConclusionThe fractional stress loss could not be classified by the cement type. Two implant cements [Multilink Implant and IP Temp Cement] showed similar properties with permanent resin cements and temporary glass ionomer cements, respectively. Careful consideration of the choice of cement is necessary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call