Abstract
The operating range extension of radial compressors is a crucial aspect in turbocharging the internal combustion engines in order to extend the operating range of the system at high efficiency for fuel and environmental impact reduction. The future scenario of automotive propulsion will have the fuel cells at the top of the ranking of possible reference systems in substitution of thermal reciprocating engines. Proton exchange membrane fuel cells for automotive or aerospace vehicles are frequently turbocharged because compressed air for the fuel cell stack is required in the cathode system. Therefore, like in turbocharged internal combustion engines, a radial compressor is combined and connected with a radial turbine to exploit the thermal energy of the exhaust gas from the fuel cell. The study and the development of this sort of radial turbomachinery is still strategic to guarantee high performance of the overall propulsion system. The operating range is an important issue and current turbocharger design must be adapted to the new requirements of the fuel cells systems with a need for extending it. Various techniques to extend the operating range of the centrifugal compressor have been investigated and a summary is reported in this work, with a focus on the casing treatment. Through a CFD simulation campaign with appropriate simplified models, the effects of installing the ported shroud, the shutter or the axial groove have been calculated with respect to a baseline configuration. These simulations have supported the identification of the main limits and advantages for each of these solutions at different operating regimes. The performance maps and some physical parameters of interest have been compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.