Abstract

A comparison of discretization schemes required to evaluate the radiation intensity at the cell faces of a control volume in differential solution methods of the radiative transfer equation is presented. Several schemes developed using the normalized variable diagram and the total variation diminishing formalisms are compared along with essentially non-oscillatory schemes and genuinely multidimensional schemes. The calculations were carried out using the discrete ordinates method, but the analysis is equally valid for the finite-volume method. It is shown that the S schemes of the genuinely multidimensional family perform quite well, particularly in problems with discontinuous radiation intensity fields. However, they are time consuming, and so they do not always become more attractive regarding the trade-off between accuracy and computational requirements, in comparison with other high-order schemes that, although being less accurate, are also more economical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.