Abstract

In this paper it is shown that the very different kinetics measured for the rise of the sodium current which follows a depolarization of the membrane in the squid giant axon, the frog node and the frog node treated with Batrachotoxin may be accurately predicted using only the measured equilibrium and static characteristics for the three preparations and the kinetics measured for the gating charge transfer. The kinetic predictions follow the use of the "silent gate" model for ion channel gating. The model is electrostatic and its chief assumptions are that the channel gate, called here the N-system, has fast kinetics and responds to the gating charge that transfers but not directly to the trans-membrane voltage applied. Because channel gating, corresponding here to the motion of the N-system, does not change its energy in the trans-membrane applied electric field the gating is electrically silent as far as gating charge transfer measurement is concerned. However the probability of gating rises with the quantity of gating charge that transfers due to the electrostatic interaction between the N-system and the gating charge, redistributed under the influence of the applied trans-membrane electric field. With these assumptions the kinetics of sodium channel gating are predictable using only the static and equilibrium characteristics of gating charge and channel activation measured as a function of membrane voltage, and the kinetics of the gating charge transfer. Because of the fast kinetics assumed for the N-system the predicted kinetics are the same for channels with any number of equivalent and independent N-systems or gates acting in parallel.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.