Abstract
New molecular models, parameterized to ab initio calculations, were developed to describe HBr and HI at the air-water interface. These were used to compare how the air-water interface influenced dissociation of NaX and HX, with X being Cl, Br, or I, and also their propensity for the interface. The polarizable multistate empirical valence bond method, which explicitly describes proton sharing, was used to model HX. Results showed that the air-water interface suppressed HX dissociation from a contact ion pair to a solvent separated to a greater degree than NaX dissociation. Furthermore, HX had a greater propensity for the interface than NaX, which was a consequence of the hydronium ion having a greatest interfacial activity of all species studied. As a consequence of this, the average configuration of dissociated HX, while in both contact ion and solvent separated ion pairs near the air-water interface, is with the dissociated hydrogen oriented more towards the air than the X atom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.