Abstract

Abstract Analyses of the relative prediction skills of NOAA’s Climate Forecast System versions 1 and 2 (CFSv1 and CFSv2, respectively), and the NOAA/Climate Prediction Center’s (CPC) operational seasonal outlook, are conducted over the 15-yr common period of 1995–2009. The analyses are applied to predictions of seasonal mean surface temperature and total precipitation over the conterminous United States for the shortest and most commonly used lead time of 0.5 months. The assessments include both categorical and probabilistic verification diagnostics—their seasonalities, spatial distributions, and probabilistic reliability. Attribution of skill to specific physical sources is attempted when possible. Motivations for the analyses are to document improvements in skill between two generations of NOAA’s dynamical seasonal prediction system and to inform the forecast producers, but more importantly the user community, of the skill of the CFS model now in use (CFSv2) to help guide the users’ decision-making processes. The CFSv2 model is found to deliver generally higher mean predictive skill than CFSv1. This result is strongest for surface temperature predictions, and may be related to the use of time-evolving CO2 concentration in CFSv2, in contrast to a fixed (and now outdated) concentration used in CFSv1. CFSv2, and especially CFSv1, exhibit more forecast “overconfidence” than the official seasonal outlooks, despite that the CFSv2 hindcasts have outperformed the outlooks more than half of the time. Results justify the greater weight given to CFSv2 in developing the final outlooks than given to previous dynamical input tools (e.g., CFSv1) and indicate that CFSv2 should be of greater interest to users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.