Abstract

We present results for the comparison of six deconvolution techniques. The methods we consider are based on Fourier transforms, system identification, constrained optimization, the use of cubic spline basis functions, maximum entropy, and a genetic algorithm. We compare the performance of these techniques by applying them to simulated noisy data, in order to extract an input function when the unit impulse response is known. The simulated data are generated by convolving the known impulse response with each of five different input functions, and then adding noise of constant coefficient of variation. Each algorithm was tested on 500 data sets, and we define error measures in order to compare the performance of the different methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.