Abstract

In many parts of Canada, limited data are available for hydrodynamic model inputs, and the ability to generate quality flood grids through 1D, 2D or 3D methods is nonviable. In this paper, the capability of simplified flood models, which rely solely on digital terrain models (DTMs), was explored to assess the quality and speed of their results. Results were validated against historic floods in two locations. Three non-physics-based simplified conceptual flood models were tested: (1) planar method, (2) inclined plane and (3) height above nearest drainage network (HAND) model. The accuracy and performance were evaluated using three criteria: inundation extent, water depth and computation time. Findings show that the HAND model is the best predictor of inundation extent, with Probability of Detection and Critical Success Index being higher than 0.90 in both study areas. Though the preprocessing time for the HAND model is lengthy, once completed, the time to simulate flooding at a variety of water levels is rapid, making this model the most suitable choice for web-based, on-demand flood inundation mapping. Knowledge of the fit of these flood models and associated uncertainty can be helpful to emergency managers such that they can better understand exposure and vulnerability while preparing flood response plans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.