Abstract
The subject of this article is the implementation of new knowledge on material and geometric characteristics obtained from an experimental research program in advanced numerical modelling of compressed columns made of austenitic stainless steel using the ANSYS Classic software. Nonlinear stress–strain curves were obtained using our own experimental program and studied in terms of identifying the most suitable nonlinear material model. Additional material and geometric characteristics were obtained from literature and other independent research. Numerical models differing in mesh density localization, formulation of element integration, non-linear material model, and initial geometric imperfections were created and compared. The aim of the models was the ultimate limit state of a strut of circular hollow cross-section stressed by compression and analysed using the geometrically and materially nonlinear solution with consideration to the influence of initial imperfections. Static resistance and limit state deformations are compared for each model. The paper presents the analysis of model uncertainty by comparing SHELL and SOLID FE models, which must be characterized before the start of the analysis of the random influence of imperfections on the limit states. The mean values and the coefficients of variation are practically the same for both approaches. In summary, the presented models can be considered sufficiently validated and eligible for integration in tandem with simulation sampling methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.