Abstract

In astronomical observations at optical wavelengths, a fast image tracking system can be adopted to reduce the effects of the atmospheric seeing and telescopic tracking error, and therefore improve the observing efficiency. Aiming at the need of astronomical observations, totally 5 kinds of algorithms in two categories were selected to make a comparative study on their accuracies and stabilities under different noise conditions by both numerical experiment and laboratory test. The results indicate that the normalized cross-correlation method and barycenter method have not only a higher accuracy but also a better reliability against interferences, they will be applied to the high-resolution spectrograph of the Xinglong 2.16 m telescope and the scientific instruments of the SONG (Stellar Observations Network Group) project, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.