Abstract

Two types of optical correlators have been built to investigate real-time pattern recognition. The first employs one-dimensional devices to perform the two dimensional correlation in real time. This architecture uses an array of light emitting diodes (LED's) to input an electronically stored reference image into the processor in parallel. The input scene data is introduced into the processor one line at a time using an acousto-optic device (AOD). Multichannel time integrating correlations are performed in the row direction using the AOD and in the column direction using a charge coupled device (CCD) operating in the time delay and integrate mode. A processor has been built using this technology which correlates a 64 x 44 pixel binary reference image with a 256 x 232 input scene at video rates. The second correlator is a space integrating Fourier transform based correlator. A magneto optic-device (MOD) is used at the Fourier transform plane to rapidly change filter functions. The binary nature of the MOD device necessitates using either a binary phase or binary amplitude representation of the desired complex filter function. For this reason, several types of Binary Phase-Only Filter (BPOF) representations have been analyzed and experimentally investigated. Experimental correlation results have been obtained using both the Hartley BPOF and a newly developed class of complex binary filters, called Quad-Phase-Only Filters (QPOF). The performance of the two systems will be compared on the basis of processing speed, space bandwidth product, processor size and light efficiency. The inherent differences between incoherent and coherent processing and their implications for filter design will also be discussed. Finally, estimates of future performance will be presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.