Abstract

Quantum correction model features the correction of the inversion layer charge on different classical transport models in semiconductor device simulation. This approach has successfully been of great interest in the recent years. Considering a metal-oxide-semiconductor (MOS) structure in this paper, the Hänsch, the modified local density approximation (MLDA), the density-gradient (DG), the effective potential (EP), and our models are investigated computationally and compared systematically with the result of the Schrödinger-Poisson (SP) model. In terms of the accuracy for (1) the position of the charge concentration peak, (2) the maximum of the charge concentration, (3)the total inversion charge sheet density, and (4) the average inversion charge depth, these well-established models are examined simultaneously. The DG model requires the solution of a boundary value problem, the EP model overestimates the position of the charge concentration peak and the maximum of the charge concentration, our explicit model demonstrates good accuracy among models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.