Abstract

Reduction or replacement of sucrose while maintaining sweetness in foods is challenging, but today there are many sweeteners with diverse physical and caloric compositions to choose from. The choice of sweetener can be adapted to match reformulation goals whether these are to reduce calories, lower the glycaemic response, provide bulk or meet criteria as a natural ingredient. The current study sought to describe and compare the sweetness intensity dose-response, sweetness growth rate, sweetness potency, and potential for calorie reduction across 16 different sweeteners including sucrose. Sweetness growth rate was defined as the rate of change in sweetness intensity per unit of sweetener concentration. Sweetness potency was defined as the ratio of the concentration of a sweetener to that of sucrose at equivalent sweetness intensity, whereas the potential for calorie reduction is the caloric value of a sweetener compared to sucrose at matched sweetness intensities. Sweeteners were drawn from a range of nutritive saccharide (sucrose, dextrose, fructose, allulose (d-psicose), palatinose (isomaltulose), and a sucrose–allulose mixture), nutritive polyol (maltitol, erythritol, mannitol, xylitol, sorbitol), non-nutritive synthetic (aspartame, acesulfame-K, sucralose) and non-nutritive natural sweeteners stevia (rebaudioside A), luo han guo (mogroside V). Sweetness intensities of the 16 sweeteners were compared with a sensory panel of 40 participants (n = 40; 28 females). Participants were asked to rate perceived sweetness intensity for each sweetener series across a range of concentrations using psychophysical ratings taken on a general labelled magnitude scale (gLMS). All sweeteners exhibited sigmoidal dose-response behaviours and matched the ‘moderate’ sweetness intensity of sucrose (10% w/v). Fructose, xylitol and sucralose had peak sweetness intensities greater than sucrose at the upper concentrations tested, while acesulfame-K and stevia (rebA) were markedly lower. Independent of sweetener concentration, the nutritive sweeteners had similar sweetness growth rates to sucrose and were greater than the non-nutritive sweeteners. Non-nutritive sweeteners on the other hand had higher potencies relative to sucrose, which decreases when matching at higher sweetness intensities. With the exception of dextrose and palatinose, all sweeteners matched the sweetness intensity of sucrose across the measured range (3.8–25% w/v sucrose) with fewer calories. Overall, the sucrose–allulose mixture, maltitol and xylitol sweeteners were most similar to sucrose in terms of dose-response behaviour, growth rate and potency, and showed the most potential for sugar replacement within the range of sweetness intensities tested.

Highlights

  • Sweetness is a key driver of liking in food products and a heightened liking for sweet tastes has been associated with increased intakes of foods with added sucrose [1]

  • Sweetness potency was defined as the ratio of the concentration of a sweetener to that of sucrose at an equivalent sweetness intensity [24], whereas the potential for calorie reduction is the caloric value of a sweetener compared to sucrose at matched sweetness intensities

  • Repeated-measures analysis of variance (ANOVA) confirmed that all sweeteners exhibited a concentration dose-dependency for sweetness intensity (F5,39 = 142.12, p < 0.001)

Read more

Summary

Introduction

Sweetness is a key driver of liking in food products and a heightened liking for sweet tastes has been associated with increased intakes of foods with added sucrose [1]. The rising incidence of obesity and type-2 diabetes has been linked with excessive sucrose intake, and fuelled the need for reducing added sucrose in food products [2,3] Countries such as the United Kingdom and Singapore have pledged to cut sucrose to either 5% free sugars in foods [4] or a 25% sucrose reduction from the current levels [5], namely through reducing added sucrose, using non-nutritive sweeteners and public health education. In the United States, 1 in 4 consumers include non-nutritive sweeteners in their diets based on a 24-hour diet recall [11] This may be an effective strategy to improve public health, and a recent meta-analysis has shown that transition to lower-energy sweeteners in place of sucrose leads to reduced energy intake and body weight in both children and adults, as energy reductions associated with the intake of these sweeteners is often not fully compensated for during subsequent eating episodes [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call