Abstract

Beating neonatal heart cell cultures were treated with diamide or t-butyl hydroperoxide, and changes in glutathione oxidation, cell beating, and protein S-thiolation (protein mixed-disulfide formation) were examined. Both compounds caused extensive oxidation of glutathione. Cells treated with diamide stopped beating within 2 min, and beating returned to normal after 30–45 min. Cells stopped beating 25 min after the addition of t-butyl hydroperoxide, and beating did not resume. t-Butyl hydroperoxide caused S-thiolation of a variety of proteins, but only one protein, of molecular mass 23 kDa, was extensively modified. Diamide caused extensive modification of proteins with molecular masses of 97, 42 and 23 kDa as well as three proteins of about 35 kDa. Though the GSSG content of cell cultures returned to normal by 15 min after diamide treatment. S-thiolation of several proteins persisted. These studies show that S-thiolation of proteins is an important metabolic response in cells exposed to an oxidative challenge by t-butyl hydroperoxide or diamide, and that the specificity of the response depends on the agent used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.