Abstract
Forecasting the short-term future energy demand in buildings and districts is a vital component towards the optimization of energy use and consequently the reduction in greenhouse gas emissions. This paper explores artificial intelligence approaches applied to estimate the future heating load in a district heating system. A distinction is made within thisd work between a prediction and forecasting based approach; a comparison is then accomplished by applying each method with prominent Machine Learning and Deep Learning based algorithms to estimate the future heating demand over 6 h and 24 h ahead. This analysis used available data from a Canadian district heating system in Quebec and actual weather forecasts obtained from Canadian meteorological services. All models within this work applied a grid search in order to calibrate their respective hyperparameters. Results of this work indicated that the prediction-based approach (with forecasted inputs) obtained a higher accuracy than the forecasting approach. All the machine learning models obtained good accuracy with errors not exceeding 16% CV(RMSE) and closer to 10% CV(RMSE) for the top performing models. Furthermore, the LSTM and XGBoost were consistently among the top performing algorithms and provided good performance over a variety of hyperparameters. The biggest difference between the two algorithms was the computational times; it was observed that the XGBoost was significantly faster to train.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.