Abstract

We compared plastic responses to variation in the light environment for sympatric populations of native and exotic dandelion species, Taraxacum ceratophorum and Taraxacum officinale. Plasticity in leaf size, inflorescence height, reproductive phenology and dispersal-related traits were measured under experimentally altered light quality (red : far-red light ratio, R : FR) and light intensity (photosynthetically active radiation, PAR). To test whether differences in means and reaction norms of dispersal-related traits between species affected colonization potential, we created seed-dispersal models based on seed-fall rate and release height. Differences in plasticity between species were not systematic, but varied in direction and magnitude among traits. Taraxacum officinale produced larger leaves that exhibited greater plasticity in size under variable light intensity than T. ceratophorum. Plasticity in scape length at flowering occurred in relation to R : FR ratio in both species, but tended to be greater in T. ceratophorum. Seed-bearing scapes of T. officinale were taller and more canalized in height across light regimes than scapes of T. ceratophorum. Seeds of T. officinale were smaller than seeds of T. ceratophorum. Models predict greater dispersal in T. officinale within open and vegetated habitats. In contrast to the idea that plasticity promotes invasiveness, results suggest that the lack of plasticity in dispersal-related traits enhances the colonization potential of T. officinale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call