Abstract

To date, a large number of algorithms to solve the problem of autonomous exploration and mapping has been presented. However, few efforts have been made to compare these techniques. In this paper, an extensive study of the most important methods for autonomous exploration and mapping of unknown environments is presented. Furthermore, a representative subset of these techniques has been chosen to be analysed. This subset contains methods that differ in the level of multi-robot coordination and in the grade of integration with the simultaneous localization and mapping (SLAM) algorithm. These exploration techniques were tested in simulation and compared using different criteria as exploration time or map quality. The results of this analysis are shown in this paper. The weaknesses and strengths of each strategy have been stated and the most appropriate algorithm for each application has been determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.