Abstract

This paper presents some approaches to the optimal design of stacked-ply composite flywheels. The laminations of the disk are constructed such that the principal fiber direction is either tangential or radial. Here, optimization problems are formulated to maximize the energy density of the flywheel. This is accomplished by allowing arbitrary, continuous, variation of the orientation of the fibers in the radial plies. The paper compares designs based on minimizing cost functions related to the (i) the maximum stress, (ii) the maximum strain and (iii) the Tsai-Wu failure criteria. It is shown that the optimized designs provide an improvement in the flywheel energy density when compared to a standard stacked-ply design. The results also show that, for a given disk design, the estimate of the energy density can vary greatly depending on the failure criteria employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.