Abstract

The two-sided second-order Arnoldi algorithm is used to generate a reduced order model of two test cases of fully coupled, acoustic interior cavities, backed by flexible structural systems with damping. The reduced order model is obtained by applying a Galerkin–Petrov projection of the coupled system matrices, from a higher dimensional subspace to a lower dimensional subspace, whilst preserving the low frequency moments of the coupled system. The basis vectors for projection are computed efficiently using a two-sided second-order Arnoldi algorithm, which generates an orthogonal basis for the second-order Krylov subspace containing moments of the original higher dimensional system. The first model is an ABAQUS benchmark problem: a 2D, point loaded, water filled cavity. The second model is a cylindrical air-filled cavity, with clamped ends and a load normal to its curved surface. The computational efficiency, error and convergence are analyzed, and the two-sided second-order Arnoldi method shows better efficiency and performance than the one-sided Arnoldi technique, whilst also preserving the second-order structure of the original problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.