Abstract

Abstract A linear primitive equation model has been used to test the hypothesis that the vertical structure of observed Caribbean easterly waves is determined by the interaction between convective heating and the environmental wind. The model determines the response to a propagating heat source in a specified basic state. The model allows for the inclusion of diffusion and cumulus momentum transports. The linear perturbations are assumed to have the form of a single Fourier component in the zonal direction. The frequency and zonal wavelength of the disturbance are taken from observations of the three-dimensional structure of a series of Caribbean easterly waves made by Shapiro. The structure of the basic state zonal wind, assumed to be a function of height, is based on observations near the latitude of largest observed wave amplitude. The maximum heating rate is 5 K day−1, centered at about 19°N. Very good agreement is found between the model-derived vertical structure of the waves and that observed by Sh...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call