Abstract
The meshless local Petrov–Galerkin (MLPG) method is a mesh-free procedure for solving partial differential equations. However, the benefit in avoiding the mesh construction and refinement is counterbalanced by the use of complicated non polynomial shape functions with subsequent difficulties, and a potentially large cost, when implementing numerical integration schemes. In this paper we describe and compare some numerical quadrature rules with the aim at preserving the MLPG solution accuracy and at the same time reducing its computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.