Abstract

Discrete dislocation simulations of two boundary value problems are used as numerical experiments to explore the extent to which the nonlocal crystal plasticity theory of Gurtin (J. Mech. Phys. Solids 50 (2002) 5) can reproduce their predictions. In one problem simple shear of a constrained strip is analyzed, while the other problem concerns a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear. In the constrained layer problem, boundary layers develop that give rise to size effects. In the composite problem, the discrete dislocation solutions exhibit composite hardening that depends on the reinforcement morphology, a size dependence of the overall stress–strain response for some morphologies, and a strong Bauschinger effect on unloading. In neither problem are the qualitative features of the discrete dislocation results represented by conventional continuum crystal plasticity. The nonlocal plasticity calculations here reproduce the behavior seen in the discrete dislocation simulations in remarkable detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.