Abstract

In this paper we compare Nash equilibria analysis and agent-based modelling for assessing the market dynamics of network-constrained pool markets. Power suppliers submit their bids to the market place in order to maximize their payoffs, where we apply reinforcement learning as a behavioral agent model. The market clearing mechanism is based on the locational marginal pricing scheme. Simulations are carried out on a benchmark power system. We show how the evolution of the agent-based approach relates to the existence of a unique Nash equilibrium or multiple equilibria in the system. Additionally, the parameter sensitivity of the results is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.