Abstract

A comparison of nonlinear autoregression with exogenous inputs (NARX) neural network and back-propagation (BP) neural network in short-term prediction of building cooling load is presented in this dissertation. Both predictive models have been applied in a group of commercial buildings and analysis of prediction errors has been highlighted. Training and testing data for both prediction models have been generated from DeST (Designers Simulation Toolkits) with climate data of Shanghai. The simulation results indicate that NARX method can achieve better accuracy and generalization ability than traditional method of BP neural network. This work provides a key support in smooth and optimizing control in air-conditioning system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.