Abstract

Both parallel and distributed network environment systems play a vital role in the improvement of high performance computing. Of primary concern when analyzing these systems is multiprocessor task scheduling. Therefore, this paper addresses the challenge of multiprocessor task scheduling parallel programs, represented as directed acyclic task graph (DAG), for execution on multiprocessors with communication costs. Moreover, we investigate an alternative paradigm, where genetic algorithms (GAs) have recently received much attention, which is a class of robust stochastic search algorithms for various combinatorial optimization problems. We design the new encoding mechanism with a multi-functional chromosome that uses the priority representation—the so-called priority-based multi-chromosome (PMC). PMC can efficiently represent a task schedule and assign tasks to processors. The proposed priority-based GA has show effective performance in various parallel environments for scheduling methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call