Abstract

Under rolling contact fatigue (RCF) existing multiaxial fatigue criteria are not well validated and predict significantly different results. Results for simple typical Hertzian RCF pure rolling are shown as previously remarked by the authors, the Dang Van criterion applied to RCF gives over-optimistic fatigue limits, due to the large influence of the hydrostatic component of the stress, particularly under some conditions. It is here shown that the “simpler” Crossland criterion gives a more realistic fatigue limit of Hertzian peak pressure, and the more “elaborate” Papadopoulos criterion gives an even more conservative value, of about 3–3.5 times higher than the fatigue limit under pure shear. It is suggested that the multiaxial criteria per se do not give a reliable estimate of the fatigue limit, and perhaps an integration within Weibull-like theories should be attempted in the future, as well as a more “unified” approach and mix of criteria taken from gears design, rolling contact in railways, and in rolling bearings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call