Abstract

AbstractModal parameter evaluation is widely used for structural health monitoring, damage detection, and numerical model calibration. This study benchmarks two methods for modal identification under controlled laboratory conditions using operational modal analysis to compare dynamic parameters from ambient vibrations and shaker tests. A 2‐storey 3D spatial steel frame equipped with 3‐axial accelerometers is used as a case study. The identified dynamic parameters are benchmarked against a preliminary finite element model by computing Auto‐MAC and MAC matrices. It can be concluded that the preliminary FEM approach performs better in the prediction of modes shapes than natural frequencies. It was found that analysing the structural response to both ambient and artificially induced excitations provide a more complete understanding of a structure's dynamic characteristics. An additional mode shape was identified from the artificially induced excitation that was not previously captured from the ambient excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.