Abstract
BackgroundExploring the use of minimum marker sets is important for balancing the technical quality of motion capture with challenging data collection environments and protocols. While minimum marker sets have been demonstrated to be appropriate for evaluation of some motion patterns, there is limited evidence to support model choices for abrupt, asymmetrical, non-cyclic motion such as balance disturbance during a bathtub exit task. Research questionHow effective are six models of reduced complexity for the estimation of centre of mass (COM) displacement and velocity, relative to a full-body model. MethodsEight participants completed a bathtub exit task. Participants received a balance perturbation as they crossed the bathtub rim, stepping from a soapy wet bathtub to a dry floor. Six reduced models were developed from the full, 72-marker, 12 segment 3D kinematic data set. Peak displacement and velocity of the body COM, and RMSE (relative to the full-body model) for displacement and velocity of the body COM were determined for each model. ResultsMain effects were observed for peak right, left, anterior, posterior, upwards and downwards motion, and peak left, anterior, posterior, upwards and downwards velocity. Time-varying (RMSE) was smaller for models including the thighs than models not containing the thighs. In contrast, inclusion of upper arm, forearm, and hand segments did not improve model performance. The model containing the sacrum marker only consistently performed the worst across peak and RMSE metrics. SignificanceFindings suggest a simplified centre of mass model may adequately capture abrupt, asymmetrical, non-cyclic tasks, such as balance disturbance recovery during obstacle crossing. A reduced kinematic model should include the thighs, trunk and pelvis segments, although models that are more complex are recommended, depending on the metrics of interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.