Abstract

Groundwater resources are vitally important in arid and semi-arid areas meaning that spatial planning tools are required for their exploration and mapping. Accordingly, this research compared the predictive powers of five machine learning models for groundwater potential spatial mapping in Wadi az-Zarqa watershed in Jordan. The five models were random forest (RF), boosted regression tree (BRT), support vector machine (SVM), mixture discriminant analysis (MDA), and multivariate adaptive regression spline (MARS). These algorithms explored spatial distributions of 12 hydrological-geological-physiographical (HGP) conditioning factors (slope, altitude, profile curvature, plan curvature, slope aspect, slope length (SL), lithology, soil texture, average annual rainfall, topographic wetness index (TWI), distance to drainage network, and distance to faults) that determine where groundwater springs are located. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was employed to evaluate the prediction accuracies of the five individual models. Here the results were ranked in descending order as MDA (83.2%), RF (80.6%), SVM (80.2%), BRT (78.0%), and MARS (75.5%).The results show good potential for further use of machine learning techniques for mapping groundwater spring potential in other places where the use and management of groundwater resources is essential for sustaining rural or urban life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.