Abstract

A range of digital image acquisition devices exists in diagnostic radiology. This study compares contrast performance of two such systems: an amorphous Silicon/caesium iodide (a-Si:CsI) based flat panel (DR) digital chest radiography system and a computed radiography (CR) system. Images of a contrast detail resolution phantom were acquired at a range of radiation doses. Three observers assessed all hardcopy images using a four-alternative forced choice observer perception technique. Contrast detail performance was calculated and low contrast performance quantified. The DR system demonstrated significantly better low contrast performance and potential dose savings of up to 75% compared to the CR system. Threshold levels of contrast detail resolution were defined and levels of under- and over-exposure, compared to the threshold level, were highlighted. Both systems were noise limited at lower exposures and latitude limited at higher exposures. The results demonstrate that the DR system should perform better than the CR system under typical clinical conditions relevant to chest radiography particularly for the detection of low contrast details such as lung metastases or pneumothoraces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.