Abstract

In this research, a bi-criteria group scheduling problem is investigated in a hybrid flow shop (HFS) environment, wherein the parallel machines are unrelated. The objective of the problem is to minimize a linear combination of the total weighted completion time being mindful of the producer and the total weighted tardiness being mindful of the customers. The underlying assumption is that the jobs are released into the system in dynamic times. The machine ready times are considered to be dynamic as well. Sequence-dependent setup times are required for changing the process between groups of jobs. The runtimes of jobs are assumed to be decreasing as the workers learn how to process similar jobs. A mixed-integer linear programing model is developed for the problem. However, since the problem is non-deterministic polynomial-time hard (NP-hard), it may not be solved to optimality within a reasonable time. This research comprehensively addresses the question of what type of meta-heuristic algorithm is more appropriate for solving these problems. In particular, local search algorithms are compared to the population-based algorithms with respect to the permutation or non-permutation properties of the optimal solution. Three algorithms based on tabu search as well as three algorithms based on simulated annealing are developed to represent the local search algorithms. Two other algorithms are developed based on genetic algorithm (GA) to exemplify the population-based algorithms. The results of a comprehensive experimental design reveal that GA-based algorithms have greater potential for identifying better quality solutions in HFS scheduling problems compared to the local search algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call