Abstract

This article discusses the spatiotemporal surveillance problem of detecting rate changes of Poisson data considering non-homogenous population sample size. By applying Monte Carlo simulations, we investigate the performance of several likelihood-based approaches under various scenarios depending on four factors: (1) population trend, (2) change magnitude, (3) change coverage, and (4) change time. Our article evaluates the performance of spatiotemporal surveillance methods based on the average run length at different change times. The simulation results show that no method is uniformly better than others in all scenarios. The difference between the generalized likelihood ratio (GLR) approach and the weighted likelihood ratio (WLR) approach depends mainly on population size, not change coverage, change magnitude, or change time. We find that changes associated with a small population in time periods and/or spatial regions favor the WLR approach, but those associated with a large population favor the GLR under any trends of population changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.