Abstract
The learning of an association between a CS and a US can be retarded by unreinforced presentations of the CS alone (termed latent inhibition or LI) or by un-correlated presentations of the CS and US (termed learned irrelevance or LIRR). In rabbit eyeblink conditioning, there have been some recent failures to replicate LI. LIRR has been hypothesized as producing a stronger retardation effect than LI based on both empirical studies and computational models. In the work presented here, we examined the relative strength of LI and LIRR in eyeblink conditioning in rabbits and humans. In both species, a number of preexposure trials sufficient to produce LIRR failed to produce LI (Experiments 1 & 3). Doubling the number of CS pre-exposures did produce LI in rabbits (Experiment 2), but not in humans (Experiment 4). LI was demonstrated in humans only after manipulations including an increased inter-trial interval or ITI (Experiment 5). Overall, it appears that LIRR is a more easily producible pre-exposure retardation effect than LI for eyeblink conditioning in both rabbits and humans. Several theoretical mechanisms for LI including the conditioned attention theory, stimulus compression, novelty, and the switching theory are discussed as possible explanations for the differences between LIRR and LI. Overall, future work involving testing the neural substrates of pre-exposure effects may benefit from the use of LIRR rather than LI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Integrative physiological and behavioral science : the official journal of the Pavlovian Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.