Abstract
Impact damage is a serious damage mechanism in composite materials, which limits their performance and reliability. Impact damage can occur during in-service applications or as a result of handling during manufacturing. Methods used currently for damage detection are based on different principles, and for that reason, they give a range of results no matter what the real damage is. Therefore, a comparison of the internal real damage with the flaw indications of a glass fibre–reinforced polymer (GFRP) laminate made with two non-destructive technique (NDT) methods has been investigated. Laser shearography measurements and C-scan ultrasonic detection were compared. Metallographic examination and surface indentation measurements provided information about the character of the real damage. Such a comparison has not yet been published because laser shearography is considered a qualitative technique. Each NDT method was able to visualise a different type of damage. The knowledge of the applicability of these methods is the key to taking advantage of both methods by combining their respective strengths. In terms of the reliability, simplicity and rapidity of all of the mentioned techniques, laser shearography turned out to be the most suitable method for the detection of barely visible flaws. The C-scan was more appropriate for precisely defining the inner damage. The tested material was a laminate typically used for ultralight aircraft. Information about the extent of damage is very important for airplane certification and maintenance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.