Abstract
Velocities of argon atoms and calcium ions were measured in the first vacuum stage of an inductively coupled plasma mass spectrometer using high-resolution laser-excited fluorescence spectroscopy. The calcium ions reached terminal velocities in the supersonic expansion that were consistently 5–6% higher than those of argon atoms, despite minimal differences in the masses of the two species. A computational model of the expansion was developed that shows the development of an ambipolar electric field along the expansion axis. With reasonable assumptions about electron temperatures in the expansion, the model accounts for the differences between the terminal velocities of the neutral argon atoms and the singly-charged calcium ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.