Abstract

A simple strategy for constructing a sequence of increasingly refined interpolation grids over the triangle or the tetrahedron is discussed with the goal of achieving uniform convergence and ensuring high interpolation accuracy. The interpolation nodes are generated based on a one-dimensional master grid comprised of the zeros of the Lobatto, Legendre, Chebyshev, and second-kind Chebyshev polynomials. Numerical computations show that the Lebesgue constant and interpolation accuracy of some proposed grids compare favorably with those of alternative grids constructed by optimization, including the Fekete set. While some sets are clearly preferable to others, no single set can claim uniformly better convergence properties as the number of nodes is raised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.