Abstract

Abstract Hard real-time systems demand high performance in combination with a timing predictable program execution. The performance of a system in the worst-case, represented by its worst case execution time (WCET), highly depends on the design of the memory subsystem. In this paper we focus on the instruction memory hierarchy and quantify the impact of different on-chip instruction memories on the worst-case timing of the system. A function-based dynamic instruction scratchpad (D-ISP), an instruction cache, and static instruction scratchpads using basic-block-based and function-based assignment algorithms are compared. Therefore, we provide WCET bounds for systems with different on-chip instruction memories and different off-chip memory timings. We show that for small memory sizes a static instruction scratchpad usually outperforms the other memories in terms of the WCET estimate. However, with increasing memory sizes the D-ISP is able to reach lower WCET bounds. An instruction cache can only provide lower WCET bounds than the other memories, if no suitable assignment for the static instruction scratchpads is found or if the D-ISP suffers from thrashing or frequently loads unused code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call