Abstract

To compare volumetric in-room computed tomography (CT) and kilovoltage (kV) cone-beam CT (CBCT) to planar imaging with respect to their ability to localize fiducial markers (FMs) for radiotherapy of prostate cancer. Image guidance options from two linear accelerators were compared in terms of identifying the center of gravity (COG) of FMs from the isocenter: a Siemens Primatom, where the couch is rotated 180 degrees from the treatment isocenter to the in-room CT vs. electronic portal imaging (EPI); and a Varian OBI system, where kV CBCT, EPI, and planar kV radiographs were compared. In all, 387 image pairs (CBCT = 133; CT = 254) from 18 patients were analyzed. A clinical tolerance of 3 mm was predefined as the acceptable threshold for agreement. COG location on in-room CT and EPI was in agreement 96.9%, 85.8%, and 89.0% of the time in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) directions, respectively, vs. 99.2%, 91.7%, and 93.2% for the CBCT and EPI analysis. The CBCT vs. kV radiographs were in agreement 100% (LR), 85.4% (SI), and 88.5% (AP), and EPI vs. kV radiographs were in agreement 100% (LR), 94.6% (SI), and 91.5% (AP) of the time. Identification of FMs on volumetric or planar images was found to be not equivalent (+/-3 mm) using either linear accelerator. Intrafraction prostate motion, interpretation of FM location, and spatial properties of images are contributing factors. Although in-room CT has superior image quality, the process of realigning the treatment couch to acquire a CT introduces an error, highlighting the benefits of a single isocentric system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call