Abstract

This research addresses the effects of the neural network s-Sigmoid function on Knowledge Discovery of Databases (KDD) in the presence of imprecise data. ANOVA testing and Tukey's Honestly Significant Difference statistics are conducted to investigate the impact of two factors: level of data missingness and imputation method. Data mining is based upon searching the concatenation of multiple databases that usually contain some amount of missing data along with a percentage of inaccurate data and noise. Therefore, analysis depends heavily on the accuracy of the database and on the chosen sample data to be used for model training and testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.