Abstract

Data from 90 tracer experiments performed in low-permeability fractured media have been studied to explore correlations among parameters controlling flow and transport. The original data had been interpreted by different authors using different models, which prevents direct comparison of their estimated parameters. In order to produce comparable parameters, the data have been reexamined using simple models (homogeneous domain, steady-state flow regime, single porosity). Specifically, hydraulic conductivity has been derived as the ratio of water flux to head gradient and apparent porosity as the ratio of water velocity to water flux; the former estimated from both first and peak arrival times. Hydraulic conductivity and porosity correlate along a straight line of slope 1:3 in log scale. While the regression is too noisy to be of predictive use, it lends some support to the use of a generalized cubic law. The fact that correlation for first arrival time porosity (0.77) is larger than for peak arrival porosity (0.62) suggests that first arrival is controlled by the same flow paths as hydraulic conductivity. Apparent porosity derived from peak arrival time is found to grow with travel time along a line of 0.55 slope (again log scale). The correlation coefficient ranges between 0.73 and 0.80 (depending on the data set) for hard rocks. The fact that this correlation is maintained when varying the flow rate at a given site leads us to suggest that it is caused by diffusion mechanisms. This conclusion is further supported by the increase of apparent porosity with the matrix porosity of the rock on which the experiments were performed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call