Abstract

We consider the combined effects of homogenization and large deviations in a stochastic differential equation. We show that there are three regimes, depending on the relative rates at which the small viscosity parameter and the homogenization parameter tend to zero. We prove some large-deviations-type estimates, and then apply these results to study wavefronts in both a single reaction–diffusion equation and in a system of reaction–diffusion equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.