Abstract

Higher order nodal basis functions for representing equivalent surface currents on antennas and scatterers are introduced. The performance of the nodal basis is evaluated by comparing two existing higher order edge bases, using the magnetic field integral equation (MFIE) formulation for scattering by a perfect electric conductor (PEC) sphere and icosahedron as test problems. Both nodal and edge bases are implemented on rational Bezier patches, giving an exact representation of the surfaces, free from geometrical error. The accuracy of the numerical solutions obtained with the three different bases for both the surface current and the radar cross section (RCS) are compared, and it is shown that in general the nodal bases give better accuracy than the edge bases for equal computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.