Abstract

The use of pyramid elements is crucial to the construction of efficient hex-dominant meshes [M. Bergot, G. Cohen, and M. Duruflé, J. Sci. Comput., 42 (2010), pp. 345--381]. For conforming nodal finite element methods with mixed element types, it is advantageous for nodal distributions on the faces of the pyramid to match those on the faces and edges of hexahedra and tetrahedra. We adapt existing procedures for constructing optimized tetrahedral nodal sets for high order interpolation to the pyramid with constrained face nodes, including two generalizations of the explicit warp and blend construction of nodes on the tetrahedron [T. Warburton, J. Engrg. Math., 56 (2006), pp. 247--262]. Comparisons between nodal sets show that the lowest Lebesgue constants are given by warp and blend nodes for order $N\leq 7$ and Fekete nodes for $N>7$, though numerical experiments show little variation in the conditioning and accuracy of all surveyed nonequidistant points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.