Abstract

The group algebras of the generalised quaternion groups and the dihedral groups of order a power of 2 are compared. Their group algebras over a finite field of characteristic 2 are known to be non-isomorphic and several new proofs of this are given which may be of independent interest. However, the two group algebras are very similar and are shown to have many ring theoretic properties in common. Lastly, the semisimple case (where the characteristic of the field is greater than 2) is considered and the minimum noncommutative counterexample to the Isomorphism Problem is identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.