Abstract

Abstract. Ground-based observations of OH (6, 2) Meinel band nightglow were carried out at Ranchi (23.3° N, 85.3° E), India, during January–March 2011, December 2011–May 2012 and December 2012–March 2013 using an all-sky imaging system. Near the mesopause, OH temperatures were derived from the OH (6, 2) Meinel band intensity information. A limited comparison of OH temperatures (TOH) with SABER/TIMED measurements in 30 cases was performed by defining almost coincident criterion of ±1.5° latitude–longitude and ±3 min of the ground-based observations. Using SABER OH 1.6 and 2.0 µm volume emission rate profiles as the weighing function, two sets of OH-equivalent temperature (T1. 6 and T2. 0 respectively) were estimated from its kinetic temperature profile for comparison with OH nightglow measurements. Overall, fair agreement existed between ground-based and SABER measurements in the majority of events within the limits of experimental errors. Overall, the mean value of OH-derived temperatures and SABER OH-equivalent temperatures were 197.3 ± 4.6, 192.0 ± 10.8 and 192.7 ± 10.3 K, and the ground-based temperatures were 4–5 K warmer than SABER values. A difference of 8 K or more is noted between two measurements when the peak of the OH emission layer lies in the vicinity of large temperature inversions. A comparison of OH temperatures derived using different sets of Einstein transition probabilities and SABER measurements was also performed; however, OH temperatures derived using Langhoff et al. (1986) transition probabilities were found to compare well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.