Abstract

The ever-increasing volume of audio data available online through the world wide web means that automatic methods for indexing and search are becoming essential. Hidden Markov model (HMM) keyword spotting and lattice search techniques are the two most common approaches used by such systems. In keyword spotting, models or templates are defined for each search term prior to accessing the speech and used to find matches. Lattice search (referred to as spoken term detection), uses a pre-indexing of speech data in terms of word or sub-word units, which can then quickly be searched for arbitrary terms without referring to the original audio. In both cases, the search term can be modelled in terms of sub-word units, typically phonemes. For in-vocabulary words (i.e. words that appear in the pronunciation dictionary), the letter-to-sound conversion systems are accepted to work well. However, for out-of-vocabulary (OOV) search terms, letter-to-sound conversion must be used to generate a pronunciation for the search term. This is usually a hard decision (i.e. not probabilistic and with no possibility of backtracking), and errors introduced at this step are difficult to recover from. We therefore propose the direct use of graphemes (i.e., letter-based sub-word units) for acoustic modelling. This is expected to work particularly well in languages such as Spanish, where despite the letter-to-sound mapping being very regular, the correspondence is not one-to-one, and there will be benefits from avoiding hard decisions at early stages of processing. In this article, we compare three approaches for Spanish keyword spotting or spoken term detection, and within each of these we compare acoustic modelling based on phone and grapheme units. Experiments were performed using the Spanish geographical-domain A lbayzin corpus. Results achieved in the two approaches proposed for spoken term detection show us that trigrapheme units for acoustic modelling match or exceed the performance of phone-based acoustic models. In the method proposed for keyword spotting, the results achieved with each acoustic model are very similar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.