Abstract

Very little is known about how global anthropogenic changes will affect major harmful algal bloom groups. Shifts in the growth and physiology of HAB species like the raphidophyte Heterosigma akashiwo and the dinoflagellate Prorocentrum minimum due to rising CO 2 and temperature could alter their relative abundance and environmental impacts in estuaries where both form blooms, such as the Delaware Inland Bays (DIB). We grew semi-continuous cultures of sympatric DIB isolates of these two species under four conditions: (1) 20 °C and 375 ppm CO 2 (ambient control), (2) 20 °C and 750 ppm CO 2 (high CO 2), (3) 24 °C and 375 ppm CO 2 (high temperature), and (4) 24 °C and 750 ppm CO 2 (combined). Elevated CO 2 alone or in concert with temperature stimulated Heterosigma growth, but had no significant effect on Prorocentrum growth. P Bmax (the maximum biomass-normalized light-saturated carbon fixation rate) in Heterosigma was increased only by simultaneous CO 2 and temperature increases, whereas P Bmax in Prorocentrum responded significantly to CO 2 enrichment, with or without increased temperature. CO 2 and temperature affected photosynthetic parameters α, Φ max, E k, and Δ F / F ′ m in both species. Increased temperature decreased and increased the Chl a content of Heterosigma and Prorocentrum, respectively. CO 2 availability and temperature had pronounced effects on cellular quotas of C and N in Heterosigma, but not in Prorocentrum. Ratios of C:P and N:P increased with elevated carbon dioxide in Heterosigma but not in Prorocentrum. These changes in cellular nutrient quotas and ratios imply that Heterosigma could be more vulnerable to N limitation but less vulnerable to P-limitation than Prorocentrum under future environmental conditions. In general, Heterosigma growth and physiology showed a much greater positive response to elevated CO 2 and temperature compared to Prorocentrum, consistent with what is known about their respective carbon acquisition mechanisms. Hence, rising temperature and CO 2 either alone or in combination with other limiting factors could significantly alter the relative dominance of these two co-existing HAB species over the next century.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call