Abstract

The continued efficient use of whey as a fermentable substrate to produce alcoholic beverages will benefit from improving the measurement of key components relevant to the fermentability of whey. One component of fermentation that is not well studied in whey is the concentration of fermentable nitrogen, either as free amino nitrogen (FAN) or yeast-assimilable nitrogen (YAN). Fermentable nitrogen in media is essential for yeast cells to replicate. Insufficient concentrations of FAN or YAN to support the growing yeast population can result in sluggish or "stuck" fermentations. We evaluated 3 common methods of fermentable nitrogen determination and compared them for use in whey fermentation systems, based on ninhydrin, nitrogen by o-phthalaldehyde (NOPA), and formaldehyde pH (Sørensen titration) values. Each measurement method was evaluated independently using standard addition curves and compared for overall accuracy using paired t-tests (α = 0.05). Although the formaldehyde pH method showed high precision, it did not measure nitrogen accurately, as it overestimated YAN in whey by up to 6 times relative to other tests. The ninhydrin and NOPA methods both showed accuracy for fermentable nitrogen determination in whey based on analysis of standardized nitrogen sources. We concluded that either the ninhydrin FAN or NOPA YAN method may be used to determine the fermentable nitrogen content in whey. This is expected to improve the ability of producers to use whey as a fermentation medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.