Abstract

This study compares the flattening and indentation approaches for modeling single asperity contacts in order to reveal quantitatively their different behaviors in terms of the constitutive relationships for the contact parameters and deformation regimes. The comparison is performed with four empirical models recently developed for flattening and indentation based on the finite element method. In the elasto-plastic regime, the classic Hertz solution does not hold and, therefore, different mechanical behavior was obtained for flattening and indentation cases. Consequently, the contact condition and relative strength of mating surfaces should be considered when choosing between indentation or flattening models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.