Abstract
The efficacy of simultaneously advancing two distinct conceptual designs (referred to here as fixed-site and non-fixed-site) for species conservation and protection is addressed. In the literature, numerous models can be found that typically stem from a particular design, but rarely are comparisons made between approaches. This paper presents a more integrated optimization framework that models landowner behavior and species viabilities at a landscape scale. Regional demand for resource extraction is used as the economic driver, a variant of simulated annealing is used to solve the model under different species protection approaches, and a detailed species population simulator is utilized to measure biological responses. When directly comparing the outcomes of different species protection strategies from a case study in Oregon (USA), it was found that neither approach was universally superior in terms of financial value or degree of protection for two late seral forest dependent species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.